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Overview of Lossy Compression

Lossy compression [1, 2, 3] is used for reducing data sizes by a sig-

nificant amount, the compression ratio of which ranges from tens

to hundreds. Modern scientific simulations can produce extraordi-

nary volumes of data. For example, climate and weather simulations

can produce terabytes of data in a matter of seconds, and the Hard-

ware/Hybrid Accelerated Cosmology (HACC) simulation code can

generate petabytes of data from a single run. Fortunately, in many

cases, consuming applications (e.g., for analysis, visualization, and

machine learning) can achieve acceptable performance on reduced-

precision data. Most often, We just need to ensure each decom-

pressed data value is within a pre-defined error-bound (e.g. 0.001).
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Figure 1. CESM data visualization comparison between original and compressed

data: When setting an error bound of 0.001, the compression ratios are 12.51,

6.79, 7.42; the PSNRs are 59.64, 96.80, and 146.05 respectively. There is no

obvious visual difference between the original and compressed data.

Figure 1 shows that when each data point has a disparity less than

0.001, the lossy compression ratio is higher than the lossless com-

pression ratio (which is usually lower than 2), while there is no visually

obvious data loss.

Challenges

Challenges for distributed lossy compression include (but are not

limited to):

1. Datasets can locate in multiple clusters. The users may need to

log in to each machine individually to access the data.

2. Command line interface is not straightforward for setting error

bounds. Users usually use SSH to log in to the computing

clusters and run (de)compression commands via text-based

terminals. For more complicated error-bound settings, this can

be too troublesome and indirect.

3. Inconvenient for data transferring. After compression, users

often need to transfer the data to other machines for

decompression and further analysis. There is no direct way to

compose the compress-transfer-decompress workflow.

4. Execution time estimation is hard for SLURM jobs. Users need

to submit batch jobs to compress large files on SLURM systems,

but there is no good way to estimate the time for compression.

If they set a longer amount of time, the job can be scheduled

much slower than a shorter one.

In addition to these challenges, selecting the most suitable com-

pressor can be hard. It is important to predict the performance to

make a reasonable choice.

Function-as-a-service (FaaS) & Globus Compute

Function-as-a-Service (FaaS) is a cloud computing model that allows

developers to write and execute code on the edge without managing

infrastructure. FaaS uses serverless architecture to execute small

pieces of code called functions.

Globus Compute works like other FaaS platforms: users first register

a function with Globus Compute by specifying the function body

(in Python), they may then execute that function by specifying the

function ID and input arguments. Unlike traditional FaaS platforms,

users also specify the endpoint ID on which they wish to execute the

function. Figure 2 illustrates the procedure of running functions via

Globus Compute.

Figure 2. Globus Compute efficiently manages connected resources by elastically

deploying workers and containers across nodes and can execute millions of

functions across thousands of nodes.
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Figure 3. Ocelot system architecture

Ocelot [4] is our distributed compression and transfer framework. It is

actively under development and supports controlling (de)compression

on multiple clusters or personal computers with one interface. Its

Globus Compute and Globus Transfer foundation enable Ocelot with

its core strengths which include (but are not limited to):

Managing (de)compression & transfer tasks in one place. Ocelot

offers a single Qt-based GUI interface for compression, transfer,

and decompression.

Easy configuration for multiple error bounds. Ocelot makes range

and region selection intuitive by offering a data preview window

where users can select multiple regions or ranges to set different

error bounds.

Compression performance prediction capability. Ocelot utilizes

benchmarking information and previous (de)compression/transfer

experiments to predict compression and transfer performance.

Multi-Region & Multi-Range Compression

We proposed a multi-region and multi-range compression method

earlier[3] for SZ3[1], but it was unintuitive to set the error bounds.

We now improve it by adding a graphical selection window as shown

in Figure 4 to set error bounds easily.

Figure 4. Region/Range-based compression with multiple error bounds: the

graphical interface allows users to preview the visualization of the data and draw

rectangles on the preview to set different error bounds for the regions. It also

maps the value range to a color bar and users can set different error bounds for

different ranges.

Experimental Setup

To demonstrate the compression performance prediction capability,

we set different error bounds for each dataset and compare the pre-

dicted and measured metrics. We mainly compare the compression

ratio (CR), peak signal-to-noise ratio (PSNR), and (de)compression

time (CP/DPTime).

We conducted our experiments on LCRC Bebop, NERSC Cori, and

Purdue Anvil computing clusters. We compare the overall time of

compression, transfer, and decompression workflow against direct

transfer to see if there is performance gain to involve compression.

The datasets we used for experiments are listed in Table 1.

Table 1. Datasets

Application Dimension Science

Miranda 256x384x384 large turbulence simulations

CESM 1800x3600 climate, cloud

ISABEL 100x500x500 hurricane simulation

QMCPACK 33120x69x69 electronic structures

RTM 449x449x235 electronic

NYX 512x512x512 cosmology

Evaluation Results

Key Takeaways. To estimate compression time, benchmarking infor-

mation is enough. The compression ratio can be predicted accurately

after classifying the data into the correct application. Range and

region-based methods improve the data quality in the interesting

area and achieve a higher compression ratio by applying larger error

bounds on other areas. The overall transfer time is improved when

involving parallel compression.

Figure 5. Nyx/CESM/Miranda application compression time and ratio prediction

error distribution (measured on Bebop KNL partition): the X-axis is the difference

between the predicted value and the real value, the Y-axis is the percentage for

each small range of difference values.

Figure 6. Transfer time comparison between direct transfer and transfer with

compression. (1) means transferring from Purdue Anvil to NERSC Cori, (2) means

transferring from Purdue Anvil to Argonne Bebop.

A)Global Range; CR=210; [-17, 17] 
eb=0.4; RMSE[-8,-5]=0.233, 

PSNR=43.04

(B)Multi-Ranges; CR=210; [-17, -8) 
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1; 

RMSE[-8,-5]=0.086, PSNR=51.35
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Figure 7. QMCPACK data: (A) The basic method is setting one error bound for the

global range. (C) The interesting range [-8,-5) has a tighter error bound of 0.15

while leaving other ranges a higher error bound of 1.
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